Neurexin IV, caspr and paranodin--novel members of the neurexin family: encounters of axons and glia.
نویسندگان
چکیده
Axonal insulation is of key importance for the proper propagation of action potentials. In Drosophila and other invertebrates, it has recently been demonstrated that septate junctions play an essential role in axonal insulation or blood-brain-barrier formation. Neurexin IV, a molecular component of Drosophila septate junctions, has been shown to be essential for axonal insulation in the PNS in embryos and larvae. Interestingly, a vertebrate homolog of Neurexin IV, caspr--also named paranodin--has been shown to localize to septate-like junctional structures. These vertebrate junctions are localized to the paranodal region of the nodes of Ranvier, between axons and Schwann cells. Caspr/paranodin might play an important role in barrier formation, and link neuronal membrane components with the axonal cytoskeletal network.
منابع مشابه
Caspr2, a New Member of the Neurexin Superfamily, Is Localized at the Juxtaparanodes of Myelinated Axons and Associates with K+ Channels
Rapid conduction in myelinated axons depends on the generation of specialized subcellular domains to which different sets of ion channels are localized. Here, we describe the identification of Caspr2, a mammalian homolog of Drosophila Neurexin IV (Nrx-IV), and show that this neurexin-like protein and the closely related molecule Caspr/Paranodin demarcate distinct subdomains in myelinated axons....
متن کاملAxon-Glia Interactions and the Domain Organization of Myelinated Axons Requires Neurexin IV/Caspr/Paranodin
Myelinated fibers are organized into distinct domains that are necessary for saltatory conduction. These domains include the nodes of Ranvier and the flanking paranodal regions where glial cells closely appose and form specialized septate-like junctions with axons. These junctions contain a Drosophila Neurexin IV-related protein, Caspr/Paranodin (NCP1). Mice that lack NCP1 exhibit tremor, ataxi...
متن کاملCanoe functions at the CNS midline glia in a complex with Shotgun and Wrapper-Nrx-IV during neuron-glia interactions.
Vertebrates and insects alike use glial cells as intermediate targets to guide growing axons. Similar to vertebrate oligodendrocytes, Drosophila midline glia ensheath and separate axonal commissures. Neuron-glia interactions are crucial during these events, although the proteins involved remain largely unknown. Here, we show that Canoe (Cno), the Drosophila ortholog of AF-6, and the DE-cadherin...
متن کاملNeurexin IV and Wrapper interactions mediate Drosophila midline glial migration and axonal ensheathment.
Glia play crucial roles in ensheathing axons, a process that requires an intricate series of glia-neuron interactions. The membrane-anchored protein Wrapper is present in Drosophila midline glia and is required for ensheathment of commissural axons. By contrast, Neurexin IV is present on the membranes of neurons and commissural axons, and is highly concentrated at their interfaces with midline ...
متن کاملThe Axonal Membrane Protein Caspr, a Homologue of Neurexin IV, Is a Component of the Septate-like Paranodal Junctions That Assemble during Myelination
We have investigated the potential role of contactin and contactin-associated protein (Caspr) in the axonal-glial interactions of myelination. In the nervous system, contactin is expressed by neurons, oligodendrocytes, and their progenitors, but not by Schwann cells. Expression of Caspr, a homologue of Neurexin IV, is restricted to neurons. Both contactin and Caspr are uniformly expressed at hi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trends in neurosciences
دوره 21 10 شماره
صفحات -
تاریخ انتشار 1998